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Abstract. A phase equilibrium surface for the 2D (square lattice) antiferromagnetic Potts 
model in the presence of its ordering fields has been constructed using the phenomenologi- 
cal scaling transformation. 

1. Introduction 

In a recent publication, Baxter (1982) has obtained the exact solution to the q-state 
antiferromagnetic Potts model at its zero-field critical point. This shows that in terms 
of a continuous q variable, the critical point decreases to zero at q = 3 (q  = 2 is the 
Ising model antiferromagnetic). This result confirms a recent conclusion of Nightingale 
and Schick (1982) who employed the scaling transformation (Nightingale 1976, 1977, 
Sneddon 1978, Wood and Goldfinch 1980, Roomany et a1 1980, Wood and Osbaldes- 
tin 1982) to examine the critical behaviour of the three-state antiferromagnetic Potts 
model in zero field. The present authors have recently demonstrated how the scaling 
transformation method can be used to yield an accurate view of the whole phase 
equilibrium surface, and in this note we use the method to construct the phase 
equilibrium surface of the three-state antiferromagnetic Potts model in the presence 
of its ordering fields. 

2. Phase structure in the model 

The field dependent Hamiltonian of this model is given by 
p = 3  

X = J - c hp c SgZp ( J > O )  
ij p = i  i 

where the site variables ui take the values 1, 2, or 3, and where the nearest-neighbour 
interactions spanned in the first summation are zero if neighbouring site variables 
assume different values. The three ordering fields h k ( k  = 1, 2, 3) in (1) favour the 
corresponding states = k, and following the treatment by Straley and Fisher (1973) 
of the corresponding ferromagnetic model, the symmetry condition 

( 2 )  hl +h* +h3 = 0 

is imposed. 
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In any of the three limits hk + -CO the model reduces to the two-state Potts model 
(the antiferromagnetic king model in a field) the phase diagram for which is well 
known (Muller-Hartman and Zittartz 1977, Sneddon 1979, Wood and Osbaldestin 
1982). A simple analysis of the ground states of (1) shows where to expect to find 
phase transitions on the zero-temperature plane. If we consider the line h z = h 3 =  
-h1/2, then at high positive hl values the ground state is as depicted in figure l(a) 
for the aligned phase, and at small positive hl values the ground state is that shown 

1 1 1 1  1 3 1 3  1 2 1 2  
1 1 1 1  $ 1 3 1  2 1 2 1  
1 1 1 1  1 $ 1 $  1 2 1 2  
1 1 1 1  $ 1 5 1  2 1 2 1  

(a ) (b  1 (C) 

Figure 1. Some zero-temperature ground state phases. ( a )  shows the disordered phase 
at high values of hl(h3<0) from which an orderdisorder transition can occur into either 
of the phases shown in (b) and (c), these are ordered phases and are respectively in the 
domains hl=h3=-h1/2 in between g > h l / J > O ,  and hl/J<4+hz/J(h3<0) (see 
equation (5)).  

Figure 2. The contours of (p2(T, /I) for hz = h3 = - h 1 / 2  in the Thl-plane. The zero contour 
is the locus of order-disorder transition points, and the two plateau regions represent 
coexistence sheets in the phases of figure l(b) (hl>O) and figure l(c) (h1<0) in which 
the spin states shown exchange sublattices across a domain wall. Approximations to the 
limit points h l / J  = !(T = 0) and K, = 0.8814. . . (hl = -CO) are clearly seen. 
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Figure 3. ( a )  The contours of (p2(T, h )  at a fixed ‘low temperature’ in the hlh2-plane. The 
zero contour borders a large region in which (p2 - 0 containing various types of antifer- 
romagnetic ordering (see figures 4(a) and (b ) ) .  The zero contour is quite close to the 
exact limiting form of (5), and the contours encircling the origin represent the disordered 
phase in the region of very small fields, the innermost contour is on 6 2  = 0. 

( b )  The contours of (p2(T, h )  in the h lh2  plane at a fixed temperature chosen between 
the maximum T, of figure 2 inside h l  >0, and the Ising model limit at h l  = -W. The 
three loops of the zero contour enclose regions of typical antiferromagnetic ordering on 
two sublattices (see figure 4(a)) 

in figure 1(b )  for the ‘ordered’ phase. These two states have energies 

E, = 2NJ-Nh1 ( 3 a )  

Eb =-Nh1/2+Nh1/4  ( 3 b )  

respectively, hence a transition between these two zero-temperature phases can be 
expected at h l / J  = 813. On moving off the line hl = h2 in the domain h3<0,  h l ,  
h2>0,  and hl>> h2 the zero-temperature state will be that shown in figure l ( a )  but 
will suffer a transition into the state of figure l ( c )  along the line E, =E,  where 

E, = - N h i / 2 - N h 2 / 2  ( 3 c )  

h l / J  - h2/J = 4 .  ( 4 )  

Second-order transitions of this type on the zero-temperature plane can be expected 
along the six line segments 

yielding second-order transitions along the line 

hk/J - h,/J = *4  ( 5 )  

and these are shown in figure 4 ( b )  as the boundary lines of the whole phase surface 
which is illustrated in figure 4 ( a ) .  

The schematic view of the phase equilibrium surface which is shown in figure 4 ( a )  
has been built up using the scaling transformation (Wood and Osbaldestin 1982) in 
which the functions 

(6) qm ( T h 1 = m5,’ ( T, h ) - (m + 2)5,:2 ( T, h ) = 0 

act as a sequence of rapidly convergent approximants to the phase surface in 
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i b l  
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Figure 4. ( a )  The schematic view of the whole phase. equilibrium surface, points on the 
surface itself are all order-disorder transition points. The points in the interior of the 
volume enclosed between the surface and the zero-temperature plane are points at which 
phase coexistence can occur. The various types of order and disorder are depicted on the 
figure. 

(6 )  The phase structure of the zero-temperature plane of figure 4 ( a ) .  The three line 
segments A, B, and C are unique to the structure in that the ordered phase has a disordered 
occupancy of one sublattice where two of the three species randomly populate one 
sublattice. The various ordered and disordered state are depicted on the figure, the 
boundaries between order and disorder are the six line segments of equation ( 5 ) .  The 
point P is Baxter’s zero-field critical point (Baxter 1982) and is the infinitely degenerate 
ground state given by the three colourings of the square lattice. 

(T,  h)-space. In (6 )  e,,, is the correlation length of an m x 00 square lattice. Here we 
have investigated the surface generated by (p*(T, h )  = 0. Figure 2 shows the contours 
of c p 2  on the K, hl-plane ( K  =pJ) with the condition h2 = h3 = -h1/2 imposed (the 
values of c p 2  are shown on the contours). The figure clearly shows two large and 
disjoint plateau regions on each side of the h l  = 0 line, each of these is bounded by 
the zero contour which appears to be asymptotic to the h l  = 0 line and to connect the 



The three-state antiferromagnetic Potts model 3597 

two regions at T = 0. This is Baxter’s zero-field critical point (Baxter 1982). Both 
the expected zero-temperature transition at h l / J  = 8/3, and the Ising-model limit at 
hl  + -m (K, = 0.8814 . . .) are seen to be well approximated by the zero contour. 

Phase transitions occur at all points on the zero contour, and the plateaus are 
regions of coexisting phases. On moving from left to right across figure 2 (at K = 2 
say) we encounter the following phases. First the aligned phase in figure l (a) ,  then 
a second-order transition into the ordered phase of figure l ( b )  in which we have 
coexistence between the phases in which the spin state U = 1, and the mixed states 
U = 2 , 3  exchange sublattices across domain walls made up of 1-1 pairs. When h l  is 
close to zero a new transition occurs into a new disordered phase, and as h l  increases 
negatively there is a further transition into the ordered antiferromagnetic phases in 
which spin states u = 2 and u = 3 each occupy one sublattice with domain walls of 
either 2-2 or 3-3 pairs. 

Figures 3(a) and 3(b) exhibit the phase equilibrium approximated by ( p 2  at a fixed 
temperature in the hlh2-plane. Figure 3(a) is at a low temperature, and in figure 3(6) 
the temperature is between the approximated Ising model limit at hl + --CO and the 
maximum critical temperature inside h l  > 0 shown in figure 2. In figure 3(a) the zero 
contour excloses a large coexistence sheet and is close to its limiting form of ( 5 ) .  The 
zero contour has a branch encircling the origin corresponding to the narrow disordered 
region about the hl  = 0 line in figure 2. At the temperature of figure 3(b) the hlh2-plane 
will cut the phase surface on the right-hand plateau of figure 2. The zero contour of 
figure 3(b) generates three loops which are the cross-sections of the three large ridges 
shown in figure 4(a) which is our schematic illustration of the nature of the whole 
surface. 

On the surface shown in figure 4(a) are all the second-order transition points, and 
various forms of phase coexistence exists inside the volume enclosed by the surface 
and the zero-temperature plane, this coexistence is between various types of antifer- 
romagnetic ordering depending on the location; some of these ordered phases are 
illustrated on the figure. The three saddle points of the surface correspond to the 
maximum critical points on the lines such as h2 = h3 (hl > 0) shown in figure 2. Figure 
4(b) portrays the types of ordered phases on the zero-temperature plane which are 
mainly the regions determined by the line segments of ( 5 ) .  The short line sections 
A, B, and C are special and interesting in that the ‘ordered’ phases are ones in which 
one sublattice is randomly populated by one of two spin states while the third state 
occupies one sublattice totally. The meeting point of these three phases is the infinitely 
degenerate ground state generated by the ‘three colourings’ of the square lattice 
(Baxter 1982, Lieb and Wu 1972). 
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